Государственное бюджетное образовательное учреждение высшего образования Московской области «Академия социального управления»

ПРОГРАММА ВСТУПИТЕЛЬНОГО ИСПЫТАНИЯ

для приема на обучение по программам подготовки бакалавров

по дисциплине «Математика и основы высшей математики»

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Программа вступительного испытания по математике по направлениям 44.03.01 «Педагогическое образование» (профиль информатика и информационные технологии в 37.03.01 образовании)», «Психология», 38.03.02 «Менеджмент», «Государственное и муниципальное управление» разработана в соответствии с требованиями Федерального закона РФ № 273-ФЗ «Об образовании в Российской федерации», на основе требований Программы средней общеобразовательной школы и в соответствии с Рекомендациями по организации получения среднего общего образования в пределах освоения образовательных программ среднего профессионального образования базе образования на основного общего c учетом требований федеральных государственных образовательных получаемой профессии стандартов И или специальности среднего профессионального образования.

Программа учитывает требования, предъявляемые по математике к выпускникам профессиональных образовательных организаций среднего профессионального образования.

Поступающий в Государственное бюджетное образовательное учреждение высшего образования Московской области «Академия социального управления» для обучения по направлению «Педагогическое образование» обладать необходимым объемом знаний, умений и навыков по математике, определяемым программой для среднего (полного) общего образования и среднего профессионального образования.

Освоение содержания учебной дисциплины «Математика» обеспечивает достижение студентами следующих результатов:

личностных:

- сформированность представлений о математике как универсальном языке науки,
 средстве моделирования явлений и процессов, идеях и методах математики;
- понимание значимости математики для научно-технического прогресса, сформированность отношения к математике как к части общечеловеческой культуры через знакомство с историей развития математики, эволюцией математических идей;
- развитие логического мышления, пространственного воображения, алгоритмической культуры, критичности мышления на уровне, необходимом для будущей профессиональной деятельности, для продолжения образования и самообразования;
- овладение математическими знаниями и умениями, необходимыми в повседневной жизни, для освоения смежных естественно-научных дисциплин и дисциплин профессионального цикла, для получения образования в областях, не требующих углубленной математической подготовки;

- готовность и способность к образованию, в том числе самообразованию, на протяжении всей жизни; сознательное отношение к непрерывному образованию как условию успешной профессиональной и общественной деятельности;
- готовность и способность к самостоятельной творческой и ответственной деятельности;
- готовность к коллективной работе, сотрудничеству со сверстниками в обра зовательной, общественно-полезной, учебно-исследовательской, проектной и других видах деятельности;
- отношение к профессиональной деятельности как возможности участия в решении личных, общественных, государственных, общенациональных проблем; *метапредметных*:
- умение самостоятельно определять цели деятельности и составлять планы деятельности; самостоятельно осуществлять, контролировать и корректировать деятельность; использовать все возможные ресурсы для достижения поставленных целей и реализации планов деятельности; выбирать успешные стратегии в различных ситуациях;
- умение продуктивно общаться и взаимодействовать в процессе совместной деятельности, учитывать позиции других участников деятельности, эффективно разрешать конфликты;
- владение навыками познавательной, учебно-исследовательской и проектной деятельности, навыками разрешения проблем; способность и готовность к самостоятельному поиску методов решения практических задач, применению различных методов познания;
- готовность и способность к самостоятельной информационно-познавательной деятельности, включая умение ориентироваться в различных источниках информации, критически оценивать и интерпретировать информацию, получаемую из различных источников;
- владение языковыми средствами: умение ясно, логично и точно излагать свою точку зрения, использовать адекватные языковые средства;
- владение навыками познавательной рефлексии как осознания совершаемых действий и мыслительных процессов, их результатов и оснований, границ своего знания и незнания, новых познавательных задач и средств для их достижения;
- целеустремленность в поисках и принятии решений, сообразительность и интуиция,
 развитость пространственных представлений; способность воспринимать красоту и гармонию мира;

предметных:

- сформированность представлений о математике как части мировой культуры и месте математики в современной цивилизации, способах описания явлений реального мира на математическом языке;
- сформированность представлений о математических понятиях как важнейших математических моделях, позволяющих описывать и изучать разные процессы и явления; понимание возможности аксиоматического построения математических теорий;
- владение методами доказательств и алгоритмов решения, умение их применять,
 проводить доказательные рассуждения в ходе решения задач;
- владение стандартными приемами решения рациональных и иррациональных, показательных, степенных, тригонометрических уравнений и неравенств, их систем; использование готовых компьютерных программ, в том числе для поиска пути решения и иллюстрации решения уравнений и неравенств;
- сформированность представлений об основных понятиях математического анализа и их свойствах, владение умением характеризовать поведение функций, использование полученных знаний для описания и анализа реальных зависимостей;
- владение основными понятиями о плоских и пространственных геометрических фигурах, их основных свойствах; сформированность умения распознавать геометрические фигуры на чертежах, моделях и в реальном мире; применение изученных свойств геометрических фигур и формул для решения геометрических задач и задач с практическим содержанием;
- сформированность представлений о процессах и явлениях, имеющих вероятностный характер, статистических закономерностях в реальном мире, основных понятиях элементарной теории вероятностей; умений находить и оценивать вероятности наступления событий в простейших практических ситуациях и основные характеристики случайных величин;
- владение навыками использования готовых компьютерных программ при решении задач.

ОБЩИЕ ТРЕБОВАНИЯ К ЗНАНИЯМ ПО ПРЕДМЕТУ «МАТЕМАТИКА»

Поступающий на обучение в Государственное бюджетное образовательное учреждение высшего образования Московской области «Академия социального управления» должен иметь следующие знания в предметной области математика.

1. Алгебра

Знать

1.1. Развитие понятия о числе

Целые и рациональные числа. Действительные числа. Приближенные вычисления. Комплексные числа.

1.2. Корни, степени и логарифмы

Корни и степени. Корни натуральной степени из числа и их свойства. Степени с рациональными показателями, их свойства. Степени с действительными показателями. Свойства степени с действительным показателем.

Логарифм. Логарифм числа. Основное логарифмическое тождество. Десятичные и натуральные логарифмы. Правила действий с логарифмами. Переход к новому основанию.

Преобразование алгебраических выражений. Преобразование рациональных, иррациональных степенных, показательных и логарифмических выражений.

Уметь

Арифметические действия над числами, нахождение приближенных значений величин и погрешностей вычислений (абсолютной и относительной), сравнение числовых выражений.

Вычисление и сравнение корней. Выполнение расчетов с радикалами.

Решение иррациональных уравнений. Нахождение значений степеней с рациональными показателями. Сравнение степеней. Преобразования выражений, содержащих степени. Решение показательных уравнений.

Решение прикладных задач.

Нахождение значений логарифма по произвольному основанию. Переход от одного основания к другому. Вычисление и сравнение логарифмов. Логарифмирование и потенцирование выражений.

Приближенные вычисления и решения прикладных задач. Решение логарифмических уравнений.

2. Основы тригонометрии

Знать

Радианная мера угла. Вращательное движение. Синус, косинус, тангенс и котангенс числа. Основные тригонометрические тождества.

Формулы приведения. Формулы сложения. Формулы удвоения. Формулы половинного угла.

Преобразования простейших тригонометрических выражений.

Преобразование суммы тригонометрических функций в произведение и произведения в сумму. Выражение тригонометрических функций через тангенс половинного аргумента.

Тригонометрические уравнения и неравенства.

Простейшие тригонометрические уравнения. Простейшие тригонометрические неравенства.

Обратные тригонометрические функции. Арксинус, арккосинус, арктангенс.

Уметь

Радианный метод измерения углов вращения и связь с градусной мерой. Основные тригонометрические тождества, формулы сложения, удвоения, преобразование суммы тригонометрических функций в произведение, преобразование произведения тригонометрических функций в сумму. Простейшие тригонометрические уравнения и неравенства.

Обратные тригонометрические функции: арксинус, арккосинус, арктангенс.

3. Функции, их свойства и графики

Знать

Функции. Область определения и множество значений; график функции, построение графиков функций, заданных различными способами.

Свойства функции. Монотонность, четность, нечетность, ограниченность, периодичность. Промежутки возрастания и убывания, наибольшее и наименьшее значения, точки экстремума. Графическая интерпретация. Примеры функциональных зависимостей в реальных процессах и явлениях. Арифметические операции над функциями. Сложная функция (композиция). Понятие о непрерывности функции.

Обратные функции. Область определения и область значений обратной функции. График обратной функции.

Степенные, показательные, логарифмические и тригонометрические функции. Обратные тригонометрические функции.

Определения функций, их свойства и графики.

Преобразования графиков. Параллельный перенос, симметрия относительно осей координат и симметрия относительно начала координат, симметрия относительно прямой y = x, растяжение и сжатие вдоль осей координат.

Уметь

Примеры зависимостей между переменными в реальных процессах из смежных дисциплин. Определение функций. Построение и чтение графиков функций. Исследование функции. Свойства линейной, квадратичной, кусочно-линейной и дробнолинейной функций. Непрерывные и периодические функции. Свойства и графики синуса, косинуса, тангенса и котангенса. Обратные функции и их графики. Обратные

тригонометрические функции. Преобразования графика функции. Гармонические колебания. Прикладные задачи.

Показательные, логарифмические, тригонометрические уравнения и неравенства.

4. Начала математического анализа

Знать

Последовательности. Способы задания и свойства числовых последовательностей. Понятие о пределе последовательности. Существование предела монотонной ограниченной последовательности. Суммирование последовательностей. Бесконечно убывающая геометрическая прогрессия и ее сумма.

Производная. Понятие о производной функции, ее геометрический и физический смысл. Уравнение касательной к графику функции. Производные суммы, разности, произведения, частные. Производные основных элементарных функций. Применение производной к исследованию функций и построению графиков. Производные обратной функции и композиции функции.

Примеры использования производной для нахождения наилучшего решения в прикладных задачах. Вторая производная, ее геометрический и физический смысл. Нахождение скорости для процесса, заданного формулой и графиком.

Первообразная и интеграл. Применение определенного интеграла для нахождения площади криволинейной трапеции. Формула Ньютона-Лейбница. Примеры применения интеграла в физике и геометрии.

Уметь

Числовая последовательность, способы ее задания, вычисления членов последовательности. Предел последовательности. Бесконечно убывающая геометрическая прогрессия.

Производная: механический и геометрический смысл производной.

Уравнение касательной в общем виде. Правила и формулы дифференцирования, таблица производных элементарных функций. Исследование функции с помощью производной. Нахождение наибольшего, наименьшего значения и экстремальных значений функции.

Интеграл и первообразная. Теорема Ньютона-Лейбница. Применение интеграла к вычислению физических величин и площадей.

5. Уравнения и неравенства

Знать

Уравнения и системы уравнений. Рациональные, иррациональные, показательные и тригонометрические уравнения и системы.

Равносильность уравнений, неравенств, систем.

Основные приемы их решения (разложение на множители, введение новых неизвестных, подстановка, графический метод).

Неравенства. Рациональные, иррациональные, показательные и тригонометрические неравенства. Основные приемы их решения.

Использование свойств и графиков функций при решении уравнений и неравенств. Метод интервалов. Изображение на координатной плоскости множества решений уравнений и неравенств с двумя переменными и их систем.

Применение математических методов для решения содержательных задач из различных областей науки и практики.

Интерпретация результата, учет реальных ограничений.

Уметь

Корни уравнений. Равносильность уравнений. Преобразование уравнений. Основные приемы решения уравнений. Решение систем уравнений. Использование свойств и графиков функций для решения уравнений и неравенств.

6. Комбинаторика, статистика и теория вероятностей

Знать

6.1. Элементы комбинаторики

Основные понятия комбинаторики. Задачи на подсчет числа размещений, перестановок, сочетаний. Решение задач на перебор вариантов. Формула бинома Ньютона. Свойства биноминальных коэффициентов. Треугольник Паскаля.

6.2. Элементы теории вероятностей

Событие, вероятность события, сложение и умножение вероятностей. Понятие о независимости событий. Дискретная случайная величина, закон ее распределения. Числовые характеристики дискретной случайной величины. Понятие о законе больших чисел.

6.3. Элементы математической статистики

Представление данных (таблицы, диаграммы, графики), генеральная совокупность, выборка, среднее арифметическое, медиана. Понятие о задачах математической статистики.

Решение практических задач с применением вероятностных методов.

Уметь

История развития комбинаторики, теории вероятностей и статистики и их роль в различных сферах человеческой жизнедеятельности. Правила комбинаторики. Решение комбинаторных задач. Размещения, сочетания и перестановки. Бином Ньютона и треугольник Паскаля. Прикладные задачи.

Классическое определение вероятности, свойства вероятностей, теорема о сумме вероятностей. Вычисление вероятностей. Прикладные задачи. Представление числовых данных. Прикладные задачи.

7. Геометрия

Знать

7.1. Прямые и плоскости в пространстве

Взаимное расположение двух прямых в пространстве. Параллельность прямой и плоскости. Параллельность плоскостей. Перпендикулярность прямой и плоскости. Перпендикуляр и наклонная. Угол между прямой и плоскостью. Двугранный угол. Угол между плоскостями. Перпендикулярность двух плоскостей.

Геометрические преобразования пространства: параллельный перенос, симметрия относительно плоскости.

Параллельное проектирование. Площадь ортогональной проекции. Изображение пространственных фигур.

7.2. Многогранники

Вершины, ребра, грани многогранника. Развертка. Многогранные углы. Выпуклые многогранники. Теорема Эйлера.

Призма. Прямая и наклонная призма. Правильная призма. Параллелепипед. Куб.

Пирамида. Правильная пирамида. Усеченная пирамида. Тетраэдр.

Симметрии в кубе, в параллелепипеде, в призме и пирамиде.

Сечения куба, призмы и пирамиды.

Представление о правильных многогранниках (тетраэдре, кубе, октаэдре, додекаэдре и икосаэдре).

7.3. Тела и поверхности вращения

Цилиндр и конус. Усеченный конус. Основание, высота, боковая поверхность, образующая, развертка. Осевые сечения и сечения, параллельные основанию.

Шар и сфера, их сечения. Касательная плоскость к сфере.

7.4. Измерения в геометрии

Объем и его измерение. Интегральная формула объема.

Формулы объема куба, прямоугольного параллелепипеда, призмы, цилиндра. Формулы объема пирамиды и конуса. Формулы площади поверхностей цилиндра и конуса. Формулы объема шара и площади сферы.

Подобие тел. Отношения площадей поверхностей и объемов подобных тел.

7.5. Координаты и векторы

Прямоугольная (декартова) система координат в пространстве. Формула расстояния между двумя точками. Уравнения сферы, плоскости и прямой.

Векторы. Модуль вектора. Равенство векторов. Сложение векторов. Умножение вектора на число. Разложение вектора по направлениям. Угол между двумя векторами. Проекция вектора на ось. Координаты вектора. Скалярное произведение векторов.

Использование координат и векторов при решении математических и прикладных задач.

Уметь

Признаки взаимного расположения прямых. Угол между прямыми. Взаимное расположение прямых и плоскостей. Перпендикуляр и наклонная к плоскости. Угол между прямой и плоскостью. Теоремы о взаимном расположении прямой и плоскости. Теорема о трех перпендикулярах.

Признаки и свойства параллельных и перпендикулярных плоскостей.

Расстояние от точки до плоскости, от прямой до плоскости, расстояние между плоскостями, между скрещивающимися прямыми, между произвольными фигурами в пространстве.

Параллельное проектирование и его свойства. Теорема о площади ортогональной проекции многоугольника. Взаимное расположение пространственных фигур.

Различные виды многогранников. Их изображения. Сечения, развертки многогранников. Площадь поверхности. Виды симметрий в пространстве. Симметрия тел вращения и многогранников. Вычисление площадей и объемов.

Векторы. Действия с векторами. Декартова система координат в пространстве.

Уравнение окружности, сферы, плоскости. Расстояние между точками. Действия с векторами, заданными координатами. Скалярное произведение векторов. Векторное уравнение прямой и плоскости. Использование векторов при доказательстве теорем стереометрии.

Рекомендуемая литература

1. Алимов Ш.А. и др. Математика: алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа (базовый и углубленный уровни).10—11 клас- сы. — М., 2014.

- 2. Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б. и др. Математика: алгебра и начала математического анализа. Геометрия. Геометрия (базовый и углубленный уровни). 10—11 классы. М., 2014.
- 3. Башмаков М.И. Математика: учебник для студ. учреждений сред. проф. образования. М., 2014.
- 4. Башмаков М.И. Математика. Сборник задач профильной направленности: учеб. пособие для студ. учреждений сред. проф. образования. М., 2014.
- 5. Башмаков М.И. Математика. Задачник: учеб. пособие для студ. учреждений сред. проф. образования. М., 2014.
- 6. Башмаков М.И. Математика. Электронный учеб.-метод. комплекс для студ. учреждений сред. проф. образования. — М., 2015.
- 7. Башмаков М.И. Математика (базовый уровень). 10 класс. М., 2014.
- 8. Башмаков М.И. Математика (базовый уровень). 11 класс. М., 2014.
- 9. Башмаков М.И. Алгебра и начала анализа, геометрия. 10 класс. М., 2013.
- 10. Башмаков М.И. Математика (базовый уровень). 10 класс. Сборник задач: учеб. посо-
- 11. бие. М., 2008.
- 12. Башмаков М.И. Математика (базовый уровень). 11 класс. Сборник задач: учеб. посо-
- 13. бие. М., 2012.
- 14. Гусев В.А., Григорьев С.Г., Иволгина С.В. Математика для профессий и специальностей социально-экономического профиля: учебник для студ. учреждений сред. проф. образования. М., 2014.
- 15. Колягин Ю.М., Ткачева М.В, Федерова Н.Е. и др. Математика: алгебра и начала математического анализа. Алгебра и начала математического анализа (базовый и углубленный уровни). 10 класс / под ред. А.Б.Жижченко. М., 2014.
- 16. Колягин Ю.М., Ткачева М.В., Федерова Н.Е. и др. Математика: алгебра и начала математического анализа. Алгебра и начала математического анализа (базовый и углубленный уровни). 11 класс / под ред. А.Б.Жижченко. М., 2014.

Техника тестирования

Используются следующие типы тестовых заданий:

- выбор с единственным правильным ответом.

Структура теста

Тест состоит из заданий на проверку умения применять теоретические знания в процессе выполнения практических заданий.

Критерии оценки экзаменационной работы

Результаты выполнения экзаменационной работы оцениваются по 100-балльной системе. Максимальное количество баллов, выставляемых за экзаменационную работу – 100, минимальное – 25. При получении менее 25 баллов вступительное испытание считается не сданным.

Образец тестового задания

Решите уравнение: $\left(\frac{1}{25}\right)^{x+2} = 5^{x+5}$ а) 3 б) -3 в) $\frac{1}{3}$ г) $-\frac{1}{3}$